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THE PLANE STATE OF STRESS OF AN ELASTIC PLANE WITH TWO INTERSECTING SLITS* 

YU.A. ANTIPOV and G.YA. POPOV 

The construction of an exact closed solution for the problem of stress 
concentration in an elastic plane near two rectilinear slits of identical 
length that intersect at the centre at an arbitrary angle is proposed. 
An arbitrary rupturing and shearing load is applied along the slit edges. 
The construction of the solution of the problem is based on its reduction 
to a Riemann problem with a matrix coefficient of special structure that 
allows solution by quadratures. The possibility of solving such a problem 
was mentioned in /l/. This solution was first constructed for the case 
when the index xe=O for the ratio of the characteristic functions of 
the matrix coefficient /2/, and then also for x.-+0/3/. 

A different method from that described in /3/ is proposed for solving 
the Riemann problem for the caseswhen x,= 1 and xe= -1. The solution of 
the problem, constructed by quadratures, is converted to a form convenient 
for numerical realization. Computational formulas are obtained for the 
stress intensity factors. 

1. Formulation of the problem of intersecting slits and its separation into 
an auxiliary problem. We investigate the plane state of stress of an elastic plane with 
two slits of identical length 2b (without loss of generality, we.consider b=i) that 
intersect at the centre at an arbitrary angle 2a (problem T). We take the bisectrix of the 
large angle between the slits as the horizontal axis of synnnetry (Fig.1). As usual, the 
positive direction of variation of the angle 8 is counter-clockwise. A positive load 

*Prikl.Matem.Mekhan.,52,4,617-627,1988 
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(38 = j, (r), 7& = I& (r) (n = 1, 2, 3, 4) is applied to the slit edges 0‘4 * . 
we separate problem T into a symmetric and antiSymmetric one relative to the horizontal 

axis of symmetry, and then each of the problems obtained into two 
more: symmetric and antisymmetric relative to the vertical axis of 
symmetry. Thehen the solution of problem T is the sum of tlae solution 
of four problems 'Tkj (iz = t,z;j -I 1, 3), each of which is formuLated aS 
follows. 

For instance, condition I.1 should be 
condition 2) on the face 8 E a - s~j2* 

satisfied csn the fact 0 ‘a far problem T,, and 

Fig* 2 Fig.3 

The following relationships hold for O<r(a, 

The functions &and x8 equal zero for f <r<ce and are unknown for o<r<a. 
The additional condtition 

should be satisfied in problems Tkj Q = 3, j = 2 or k = 2, j = it I 

We will prove this condition for K = 1 (problem TV,). Using the notationu$= aele_ao, a;f:= 

Ur&to for I"= 0, by virtue of (1.1) we have 

Furthermore I since the displacements u* equal zero In the directfon B=e+S& for 
0=*o,r=+o (Fig.3), we have 

u*~U$casa.-U~sinCX=O 

Comparing the Lasti relationship with f1.3), we arrive at the.xequired condition f1.2). 
It iS proved analogously for k= 2. 

Let .L(") and N(R) be stress intensity factors, respectively of 5% and %e at the 
vertex A, tFig.1) for the problem T while &J and MU are the stress intensity factors of 
5s and %E~B for problem T&p Then it can be seen that 
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L(2) = 41 + 4, - 4, - L22, it’@) = -a,, - N1* + N,, f N,s 

iw = L,, - L,, - La1 + Get iw = N,, - NIB - N,l -j- N,, 

L(Q) = L,, - Ll2 + Ll - Lsa, M4) = --NIL -I- N,, - Iv,1 + N, 

It is established from an analysis of the characteristic equations of problems Trr that 
aLI. the probl.ems formulated from class S /4/ (it consists of problems for which the Saint- 
Venant principle is valid) andthe stresses decrease as r+co no more slowly than T-I- As 
r-0 the stresses can increase but not more rapidly than r-6 (0 < s -=z 1). 

2. Solution of problems ~~~~ We will first obtain the solution of the auxiliary 
problems TIrk fk = 1, 2). We introduce the vectors 

The vectors 

domains D+ and D- 3 0. We consider the positive direction on L to be that which keeps the 
domain Di to the left, Since 9 (r) = 0 (r-l) as r--f 00 and 

holds (6(T) is the delta function), then the vector -@p(s) is analytic in the domain DCUL 
while the vectors x_"(s) and $_" (3) are analytic in the vector 
11 R(S), 'Pa (S)ll 

D- u L. Therefore, 'p (8) = 
defined by the relationships 

9, (s) = $+" 6% sEED'; cp fs) = x_* (s), s ED- (2.2) 

is piecewise-analytic with thefineof jumps L. 
We reduce problems Tkk to a Riemann matrix problem by the method /5/ based ontheMellin 

integral transform (E is the elastic modulus) 

cp- @) = a ctg (zt/2)G ft)m+ (t) + g It), t E L 42.3) 
a = 4/E, g (t) = Q ctg (ntl2)G (t)$_" (t) 

G(s)=1 b(sf+ cW~fs1 c (4 m_ @I 
c(s>m+(s) b(s) -c(s)l(s) u 

b (s) = 112 (-l)R+l tg (ns/2)[&1 (s, a)cos 2as e 4-l (s, n12 - 
a)cos {IT - 2a)sl 

c fs) = 'I, tg (ns/2)&-' fS* EC) - dt-' (s, n/2 - aff I 
d~~S,OL)=Ssin2a-~-l)ksin2as (k=I,2) 

1 (8) = -Cos 2a, rn* (s) = (fs + 1) sin 2a 

(2.5) 

Let 

d(s)=h,fs)h,(s), e(s)=+ -#* f(s)= PfS) + tra,(s)m (s) 

% = ind (hi jt)fh, @)I-'), XA = ind IA, (t)hg (Qj 

where L t4 % (4 are characteristic functions (eigennumbers) of the matrix G (6); then A (8) 
and e (s) are the determinant and index of G(s) /2/ and 

h, (s) = tt (8) - f-1)" C (s)f/* fs) (n = t, 2) 

The characteristic functians possess the following directly confirmable properties 

1) A,(-0 + i2) - 1, z* *m 

2) &I ($9 > 07 Y3 -0 

3) x, (t) > 0, t Ez J&f (f = i.C, 1 y I < ITl-c~l 

It follows from these properties that [argh,(t)]]t = 0, meaning xB =xb = 0, 
Therefore, the solution of the factorization problem 

G jT) = X' (t) ix- ($)]-I = IX- (t)I-lx* (t)* t E L 
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is determined by the formulas /2/ 

c;t (4 = ch If’,‘* (s)f3 ($1 i 2 (s)f-‘12 (s) sh I? (s)p @)I 

s* (s) = my (s)f^“‘l (s) sh If’/* (s)p (s)] 

(2.7) 

(2.8) 

(2.9) 

We use the representation 

tg F =: K+ (8) 
--K-(s) 

K+(+_I$-$) , K-@)= rc* -i-da 
r P/l + s/Z) 

wh_ere the functions K*(s) are analytic in the domains D*and have no zeros there, where we 
have by virtue of the expansion from /6/ fp.62) 

K*(s)-(frfsiZ)'$ s--t=, sED_f (largs I<n) 

On the basis of a theorem of Abelian type /7/ (p.473), we obtain 'p (s) = 0 (s-"Y), s -3 co, 
SED* (siS.5). we substitute (2.6) into (2.3) and take into account the boundedness of the 
canonical matrix X(s) at infinity. Subsequent, application of Liouville's theorem results in 
the following solution of problem (2.3): 

I+=-ad+, SED+; ‘P-(s)+$Q-(s), SED- 

P(s)=&&f *dt 
L 

We will now determine the stress intensity factors oe(r,O), %,e(r,O) at the apex of the 
slit 

K, = Ulm+ V’Zn (r - 1) z,t, (r, 0) (2.40) 

Because of (2.1) and (2.2) we have on the basis of a theorem of Abelian type 

cPn+ (s) - K, (--2s)~'I:, s -+ 00, I arg (-41 Q 8, < n/2 

Taking into account that 

8 (iz)j-"* (iz) = 0 (e-P*Q 1 z 1 -+ 00 (pe > 0) 

we obtain an estimate for the integral (2.9) 

sin 2a p(s)--q&p s-w; u=- 
O" e(i7)CIe 

n Ofl/.o s 

and then taking account of (2.7) we have 

cosu -sinu 
[X(S)]_' -Q, s -+ Co; 

If we use the notation 

we finally find 

Ir: = Qu, K = II K,, KP(I (2.ll) 

This formula determines the factors I&., Nklc for problems Z's& (k = i, 2): &k = K,, N&g = 
KS. 

I&t us write (2.11) in detail for the constant load case, i.e., 1p(r)s1p =~~~l,~e~~. We 
have 
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K = -I/;iQX+ (--I) 4 

Analogous formulas can be obtained for a polynomial load as well. 
We note that it is convenient to use the following formulas for a numerical realization: 

(s # Oh which are obtained from (2.9) and (2.7) by obvious reduction /2/. 

3. Solution of problem T.,,. we now examine the case when k+j. bt k = 1, j = 2, 
first. Retaining the same notation of (2.1) and (2.2) as in the solution of prob'?ms Tkk, 
we arrive at the Riemann matrix problem 

cp- (t) = --a# (t)cp+ (t) + g (t), t E L (3.1) 

where a = 4/E, g(t) = --&G(t)*_” (t), and G(s) has the form (2.4). where 

b (s) = llpi [c&-~ (s, a) cos 2as - d,-’ (s, n/2 - a) ~0s (n - 
2a)sl 

c (s) = r/,i [d;' (s, a) - d,-' (s, n/2 - a)1 

i (4, w 69 

and dk (&a) are defined in (2.5). 
The characteristic functions possess the following properties 

1) 1, (-0 + iT) - +i, z++oo (n=1,2) 

2) h, (y) - in (qy)-‘, h, (v) - -iny/4, y ++ -0 

q = (2a + sin 2a)(n - 2a - sin 2a) > 0 (0 < a < n/2) 

3) h*(t)SO, tEL,r (n=1.2) 

Hence, [arg h, (t)l IL = n, [argh, (t)] IL = --n, and consequently 

%A = ind {h, (t)h, (t)} = 0, x8 = ind {& (t)[h, (t)l-l] = 1 

we select the branch of the logarithms of the characteristic functions 

Og Im {ln h, (t)) < 2n, t E L 

Then 

i 

0, tE L, %(t)=arg#= zn, tEh+ 

0 < e,(t) < 2n, t E c, 

Therefore, the branch of the index a 0) and the function In A’ls(t) are found 

(3.2) 

(3.3) 

(3.4) 

In A’/* (t) = l/, In 1 lil (t)h, (t)I + in, t E L (3.5) 

To make the subsequent intermediate calculation specific, we fix the branch of the func- 
tion f% (s) = (b,* - b,V)‘$ b, = 1, b,= sin2a (as for the solution of problems Tkl( theselection 
of the branch does not influence the final formulas governing the solution of the problem). 
We construct a slit connecting the points -s = b", s = -_b" (b" = b,lb,) and passing through the 
infinitely remote point, and we determine the change in the arguments --n<tJ*<n((8* =arg 
(b’*s)). The selected branch possesses the following property 

j'/a (s) - -ib,s sgn (Im s), s w 00 (3.6) 

The factorization (2.6) of the matrix G (s) is constructed by means of (2.7) and (2.8), 
where the solution of the boundary value problem that vanishes as s-+00 should be taken as 

B (s) 

fJ+ (t) - fl- (t) = f'l: (t)e (t), t E L (3.7) 
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Since [8, (t)lIr. = 2n and the point of the contour at which the index of the matrix t' (1) 
undergoes a discontinuity is the infinitely remote point, we convert expression (2.9) deter- 
mining the solution of problem (3.7) into a form (more convenient than (2.9) for analysinq 

the solution at infinity) 

Taking account oftheproperty 2) of the function h,(s) as well as of (3.3) and (3.4), 

we obtain 

E (ir) - Vz In I-4 (qT*)-‘l, 7 -+ 0 (3.9) 

E (t) = E0 (in) + ‘l,ni (sgn r + I), iz = t E L,,* 

Ed (iz) = ‘/, In 1 h, (iT)& (it) ( - 1/2e-kJrl, T - I+ (h >.O) (3.10) 

and then by using the substitution t = it we arrive at the expression 

(3.11) 

Setting t = 1 y leie in the integrand for I&(S) from (3.8) and using formula 2.2.5.23 
from /8/ to evaluate the last integral in (3.8), we obtain 

(3.12) 

B (s) = h [f”’ (4 + hl 
isbz [f”‘(s) - isbr] ’ 

1 arg is I< n, I arg B (4 I < n 

Let ISI> first. We pass to the limit y--t-o in equalities (3.11) and (3.12) and 
obtain 

(3.13) 

We now determine the behaviour of the canonical matrix X(s) at infinity. Examining 

the case Ims>O and Im S< 0 separately, taking (3.6) into account, we findthebehaviour 

at infinity of the function aO(iT) (3.10) from (3.13) 

f'/z (s)fi (s) = --sgn (Im s)[ln (is)": + xl + 0 (1) (3.14) 

s-+00, Iargis I<n 

1 2bz x=Tln-21;- + ib,q, 

Furthermore, by virtue of the relationships (3.5) and the equality 

F- t-s =+ni, SEED* 

we obtain from (2.7) 

(3.16) 

Kence we find A*(s) N fi, s -+ co, s=D*. NOW taking account of (3.14) and (2.7), we 
have 
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Taking into account the equality 

(is)% =i &VW& (T s)y s E n&9 Iargiis I<% f arg W)i <Jr/2 

we finally obtain as S+c0 

xr’s (8) _ @qi”/P (fs)” I i 
I 0 +21 -i 1' SED*, targ(Ts)I<~/2 (3.17) 

Defining the stress intensity factors ae(r,O) and a,e(r, 0) by using the relationships 
(2.101, we have 

cpn* (4 - K, (-zs)-"*, s -+ m, 1 arg (--.$I Q BiJ < xl2 
(Pn- (s) = 0 (s-y, s-+00, Iargs [<0,<niZ 

and, therefore, as s-3-00 

s E Lt+ \ L 

X- (s)cp- (s} = 0 (I)$, s ED- \ L, f = 11-y 
<3.18) 

we substitute (2.6) into (3.11, take account of (3.18) and apply Liouville's theorem. 
Consequently, for Is /<Co we have the following formulas for the desired solution of problem 
(3.1): 

'p' (s) = id' 1x+ ($)I-' [CJ - f2* (s)], s is tr+ 

4 (s) = {X- (s)s)l-" fCJ -S-r (s)l, s ED- 

(C is an arbitrary constant). 
Satisfying the additional condition (1.2) (for k = %), which 

notation (2.21, can be written in the form 

'PI- (0) = 9)P (0) @a 

we find from the second equality in (3.19) 

(3.19) 

taking account of the 

(3.20) 

(3.21) 

Cf (0) = ch Ib,p- @)I & 2 (v&-l sh 1q- (011 (3.22) 

.s& (0) = ??q fV)b,-'shffr,fr (O)] 

We will calculate fl-(0) (formula (3.13) is obtained under the assumption that Is i>O). 
Setting s=O in (3.111, we find &(O)=O. T o obtain c,(O) we take (3.9) into account and 
represent (3.12) in the form 

Taking into account that In I-- exp (-2i@)] = 3x8 - 2&, we find from (3.23) as Y-t -0 

We have from'the last equality in (3.8) 
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We therefore arrive at the relationship 

lim Be (0) = (2bJ’ [In (b,l/‘</b,) - id21 
Y--O 

and hence, taking account of (3.22) we obtain 

2c* (0) = co f co-1 * 2 (0)&l (co - co-l) ((3.24) 

2s* (0) = my (O)&’ (c, - co_‘), c0 = (1 - i)f/b,Tp’ (2bJ’ 

The quantities Q,-(O) in (3.21) are found by using the theory of residues. In the 
special case when q(r) = 'p= IIqI,$BIlr$j = const, we have 

%- (0) I II c+(--1)%+s+(--1)% 
a 

a 
_ (o) = aiA+ (- 1) x s_ (-- 1) a+ c_ (-- we I 

Here h+ (-1) is determined by (3.16) while ,c* (-I), ~(-1) are the relationships 
(2.8) and (3.13). 

We will obtain computational formulas for the stress intensity factors L,,, NIB. Comparing 
the asymptotic equality (3.18) with the relationship resulting from (3.19) 

x+ (s)cp+ (s) N a-WJ, s + 00, s E D+ \ L 

we arrive at the following formula 

K, f iK, = 2 ~&-$*+x+iN*C 

where x and C are determined by (3.15) and (3.211, respectively. Therefore, the stress 
intensity factors introduced in Sect.1 have been found L,, = K1, N,, = K,. 

4. Problem T,,. The boundary value problem of the theory of elasticity formulated in 
Sect.1, T,, is reduced to the Riemann matrix problem (3.1) where 

b (s) = I/& Id,-’ (s, x/2 - a)cos (n - 2~~)s - d,-’ (S, a)COs 2aS1 

c (s) = --‘l& Id,-’ (8, n/2 - a) - d,-’ (s, a)1 

and l(S), rn* (s) and dk (s, a) are defined in (2.5). The characteristic functions a1 (s), 1, (s) 
possess properties 1) and 3) from (3.2), as well as the following property analogous to 
property 2) from (3.2): 

h, (y) N -iny/4, hl (y) - in (qy)-‘, y + -0 (4.1) 
q = (2a - sin 2a)(n - 2u + sin 2a) > 0 (0 < a < n/2) 

Therefore 

[arg Al (t)lI~ = --n, Iarg h, (t)lI~ = n; (4.2) 

XA = 0, XL = -1 

We determine the branch of the functions In&,(t) (n = 1,2) exactly as in Sect.3. Then 
(3.4) and (3.5) remain true. However, because of (4.2), in this case &-and I&+ change places 
in (3.3). 

The solution of the factorization problem (2.6) for the matrix G(s) is governed by 
(2.7) and (2.8), where the function fl (s) in (2.8), which is constructed analogously to that 
mentioned in Sect.3, differs from (3.13) just by the sign in front of the logarithm and by 
the replacement of b, by -b,. 

AS s-+00 we find 

f/a (s)p (s) = -. egn (Im s)[ln (-is)‘/* + xl + 0 (I), 

I arg (-is)1 <n 

(formula (3.15) remains true for x 1. 
The behaviour of the canonical matrix x (a) at infinity is determined by the asymptotic 

equality that differs from (3.17) by the replacement of x F in14 by x & inl4. 
The solution of the Riemann matrix problem (3.1), corresponding to problem T,,, is found 

from (3.191, where the arbitrary constant in (3.19) is determined from condition 21.2) (for 
k = 2). which can be written in the form 

w- (0) -- --cp; (0) ctga (4.3) 

Taking (3.20) and (3.21) into account we find an expression for C from condition (4.3) 
that differs from (3.21) by the replacement of. tga by -ctga. h%en calculating the value 
of b-(O) in the expression for e*(O) and s*(O) because of (3.22)' we take accountofproperties 
(4.1). As in Sect.3, we have 
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The intensity factors 

lim j3- (0) = (2b,)-l t-111 (b,l/;i/b,) - in/21 
Y-+0 

are determined by equalities f3.241, where 

c*r= (i - i)jf%, (24T)'3-1 

L,, and NtI are found from.the formula 

L,, + iN,, = ~V%-?Y~+~W 

Fig.4 Fig.5 

The Eollowing plane problem is solved by an analogous scheme. There are two thin 
absolutely rigid inclusions of identical length intersecting in the middle at an arbitrary 
angle in the elastic plane. A force P and moment M are applied at an arbitrary angle at the 
point of intersection of the inclusions. This problem reduces to three separately solvable 
Riemann matrix problems 21 with coefficients of the form (2.41, where, if we usethe notation 
~$1 = ind {I@ (t) [A,(j) (t)l-I}, where &u)(t) (n = i;2) are eigenfunctions of the matrix coefficient 
of problem 81, then ~$1) =Z 1, #e(i) = -_i, @ I 0. 

5. Uniform tension at infinity for a plane with two intersecting slits. 
As a numerical example we will considertheproblemofthe tensionin an elastic plane with two 
intersecting slits by a load of constant intensity p applied at infinity at an angle 0=0 
or @=a& to the horizontal axis of symmetry tFig.Q). 

In the case when s=O 

L(i) = K,, N(i) = (-I)+-'& (t = i, 2, 3, 4) 

where K, (RI11 is the intensity factor of the stress Q&1 at the apex AX, The solid lines 
in Fig.5 represent the dependence of UIIp and KlrJP (curves I and XI) on the magnitude of 
the angle a(O<a<n/2,s= 2). We note that for a= 0 or a=&2 {the case of one crack1 
Eli= 0 while KI= 0 for rr=!, and K,=fZ_ for a=~@. The factors K,, X,, tend to 
these limit values as a-0 and or-r@, (after reaching the minimal value -0.52 for a=O.4!& 
K,, starts to increase and tends to zero as a _ n/2). 

In the case when o= n/4 
L(') = L(i+Sb = Kl$ Ni = N('*) = XII, i (f = 1, 2) 

The dependence of KIJP, K&P It = i, 2) on the quantity a W<u<W are represented by 
the dash-dot lines in Fig.5 <I= i), where 

%ftaln/+6., = %IlW=YW4%*' Xx1.r ta*/t-m, = -KII, ilawr/4.+a. 
(0 < a* <S/4) 

In the limit case u=O 

- %, = K1,r = fiPJ2, K&I = &I"*= -fG-P/2 

The case of uniform tension with rotation of a plane with two intersecting slits at 
infinity is also considered, 
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A PERTURBATION METHOD FOR MIXED THREE-DIMENSIONAL PROBLEMS OF THE THEORY OF 
ELASTICITY WITH A COMPLEX LINE OF BOUNDARY-CONDITION SEPARATION* 

N.M. BORODACHEV 

A modification of the perturbation method is proposed, based on the 

utilization of variational formulas and enabling asymptotic expansions 

(AE) to be obtained for mixed three-dimensional problems of the theory of 

elasticity with a complex line of boundary-condition separation. Application 

of Lighthill's method enables these expansions to be transformed into 

uniformly suitable ones. The problem for an elastic body with a slit 

(crack) and the contact problem of the theory of elasticity are considered 

separately. For the body with a slit the variational formula determines 

the variation of the displacement of the slit surface caused by variation 

in the shape of the slit contour. The effectiveness of this formula for 

constructing AE in problems associated with a perturbation of the shape 

of the slit contour is shown. Cases of slits of complex shape in an 

infinite body that differ slightly from a circular slit are examined in 

detail. A scheme for constructing similar AEis mentioned for spatial 

contact problems of the theory of elasticity with a complex shape of the 

contact area. 
A review of the application of perturbation methods to mixed problems 

in the theory of elasticity is contained in /l, 2/. The solutions of 
mixed spatial problems in the theory of elasticity with a complex line 

of boundary condition separation, obtained by using other methods, are 

discussed in /3-8/. The behaviour of the solution of the boundary value 

problem for a pseudodifferential equation (in particular, crack theory) 
for variation of the domain was investigated in /9/. 

1. We consider a linearly elastic body occupying a simply-connected volume V. Let 0 
be the surface bounding this volume. There is a plane slit of surface S in the body. A 

kinematic boundary condition is given on the part 0, of the body surface and a static con- 

dition on its other part 0,. The boundary contour of the slit r is a plane curve. We use 

a rectangular system of coordinates zl,zg, ~a). The slit is in the plane 'z* = 0. We associate 

the positive orientation SC of the surface S with the limit value xs = o+ and the negative 

orientation S- with z8 = O-. The slit surfaces S+ and S- are contained in 0,. i.e., a static 

boundary condition is given on the slit surface. 

Let us magnify the size of the slit by displacing the contour r in a nearby location rr. 

At each point MEW we direct the variation an(M) along the outer normal to the curve r. 
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